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1 Introduction

Thanks to the rapid increase of computing power in recent years, simulations of plasmas and
particle beams based on direct solution of the Vlasov equation on a multi-dimensional phase-space
grid are becoming attractive as an alternative to Particle-In-Cell (PIC) simulations. Their strength
lies essentially in the fact that they are noiseless and that all parts of phase space, including the tail
of the distribution, are equally well resolved. Their major drawback is that, for inhomogeneous
systems, many of the grid points (where no particles are present) are wasted. This is especially
the case for beam simulations where the beam moves rapidly through the phase space (due to
varying alternating-gradient focusing forces, for example). This inefficiency has made such Vlasov
simulations unsuitable for those cases.

One of the methods which has proven very efficient for the direct resolution of the Vlasov
equation is the semi-Lagrangian method [1, 3]. It consists in updating the values of the distribution
function at the grid nodes by following the characteristics ending at these nodes backwards and
interpolating the value at the bottom of the characteristics from the known values at the previous
time step. In general the interpolation grid is fixed, but this is not mandatory.

This paper introduces the concept of a moving grid which is mapped at each time step from
a logical uniform grid to the beam, so that it contains the whole beam without needing too many
points with vanishing values of the distribution function. In order to implement this new method,
we introduce a new time stepping algorithm which does not rely on the time splitting procedure
traditionally used in Vlasov solvers.

The model we consider throughout this paper is the nonrelativistic Vlasov equation coupled
self-consistently with Poisson’s equation. It reads

∂f

∂t
+ v · ∇xf +

q

m
(E + v ×B) · ∇vf = 0, (1)

the self electric fieldE is computed from Poisson’s equations

−ε0∇2φ = ρ(x, t) = q

∫
f(x,v, t) dv, E = −∇φ.

The magnetic field is external and considered to be known.
The paper is organized as follows: We first recall the traditional semi-Lagrangian method.

After that, we introduce a new time stepping algorithm that does not require splitting and which is



required when the coordinate axes are not aligned with thex andv directions. We then describe the
moving grid algorithm in a general setting first and finally present its application to the simulation
of beams in transverse phase-space along with some first numerical results.

2 The semi-Lagrangian method for the Vlasov equation

The semi-Lagrangian method consists in computing a numerical approximation of the solution
of the Vlasov equation (1) on a phase space grid by using the property of the equation that the
distribution functionf is conserved along characteristics. More precisely, for any timess andt we
have

f(x,v, t) = f(X(s;x,v, t),V(s;x,v, t), s),

where(X(s;x,v, t),V(s;x,v, t) are the characteristics of the Vlasov equation which are solution
of the system of ordinary differential equations

dX

ds
= V, (2)

dV

ds
= E(X(s), s) + V(s) ×B(X(s), s), (3)

with initial conditionsX(t) = x, V(t) = v.
From this property,fn being known one can induce a numerical method for computing the

distribution functionfn+1 at the grid points(xi,vj) consisting of the following two steps:

1. For alli, j, compute the origin of the characteristic ending atxi,vj, i.e. an approximation of
X(tn;xi,vj, tn+1), V(tn;xi,vj, tn+1).

2. Asfn+1(xi,vj) = fn(X(tn;xi,vj, tn+1),V(tn;xi,vj, tn+1)), fn+1 can be computed by in-
terpolatingfn which is known at the grid points at the pointsX(tn;xi,vj, tn+1),V(tn;xi,vj, tn+1).

This method can be simplified by performing a time-splitting separating the advection phases
in physical space and velocity space, as in this case the characteristics can be solved explicitely.

The semi-Lagrangian method does not require any specific interpolation scheme. However,
numerical experience dictates use of a high enough order so that diffusion, which is the most
important numerical error in this method, is limited to an acceptable level. The only natural re-
quirement is that the interpolation enables to get a good continuous reconstruction off (at the
lowest possible cost). Hence one could use a different interpolation grid for each time step. This
can save a lot of time when the support of the distribution function evolves considerably over time,
as is the case for a beam in a periodic focusing channel. In the remainder of this paper, we extend
the semi-Lagrangian method to allow use of an interpolation grid which is moving in time.

3 A second order algorithm for the characteristics

When the grid transformation mixes space and velocity components the traditional splitting method
([2]) cannot be performed. Therefore we need to introduce an efficient method for solving the
characteristics without splitting. A possible option would be to use the two time-steps method that



was introduced in [1]. However, this has the drawback of decoupling even and odd time steps.
Let us instead introduce a second order predictor-corrector method to compute the origin of the
characteristics based on an isochronous leap-frog algorithm.

Algorithm 1: Knowing the final position(Xn+1, V n+1) at time steptn+1, as well asfn, ρn−1,
En we can compute the initial position(Xn, V n) using the following algorithm:

1. PredictĒn+1 using the continuity equation (or directly Ampere’s law in 1D)

ρn+1 = ρn−1−2∆t∇·Jn, Jn = q

∫
fn(x,v)v dv, −∇2φn+1 =

ρn+1

ε0

, Ēn+1 = −∇φn+1.

2. Vn+ 1
2 = Vn+1 − ∆t

2
Ēn+1(Xn+1); Xn = Xn+1 − ∆tVn+ 1

2 ; Vn = Vn+ 1
2 − ∆t

2
En(Xn).

3. fn+1(Xn+1,Vn+1) = interpolation(fn)(Xn,Vn); ρn+1 =
∫

fn+1 dv,

4. CorrectĒn+1 using−∇2φn+1 = ρn+1

ε0
, Ēn+1 = −∇φn+1.

5. If ‖Ēn+1 − Ēn+1
prev‖ > threshold go back to 2.

Our first 1D tests show that the error decreases very rapidly: the relative error is of the order of
10−2 after the predictor step, decreases to around10−9 after one corrector step and reaches10−15

after two corrector steps. Hence, given the other errors inherent in any discrete algorithm, a single
corrector step is sufficient. Therefore the cost of the algorithm, which comes mostly from the
interpolation step, is roughly the same as for the split algorithm, where one interpolation at each
split step is necessary.

4 The semi-Lagrangian method on a moving grid

4.1 The algorithm for the Vlasov solve

The semi-Lagrangian method consist in two conceptually different steps:

1. An advection step which consists in solving a large number of decoupled ordinary differ-
ential equations. This step is completely independent of the grid and is most naturally per-
formed in the physical space,

2. An interpolation step which is necessary to compute the value of the distribution function
at the origin of the characteristics which are not on the grid. The interpolation grid is only
needed to reconstruct the distribution function at every point in phase space at one given time
step and needs not be the same at two different time steps.

In order to optimize step 2 one needs to position the interpolation points so as to be able to recon-
structf with a given acuracy at the lowest possible cost. In beam dynamics simulations the global
movement of the beam is mostly determined by the external forces and even if the self forces are
important it can be determined by the evolution of the envelope equation. Hence this information
should be used to position the grid points.



On the other hand, in order to simplify the interpolation step, we choose to always perform
it on a uniform logical grid, the position in the actual phase space of the grid points being given
by an invertible mappingϕt from the logical grid to the physical grid. We chooseϕt such that
it is continuously differentiable as well as its inverse. The subscriptt reminds us thatϕt can be
different for different times.

In order to describe the algorithm, we need to introduce a few notations regarding the logical
and physical grids. We shall denote with a∗ the coordinates in the logical grid. Then for a given
point (x,v) in the physical phase space, we have

(x∗,v∗) = ϕ−1
t (x,v) or (x,v) = ϕt(x

∗,v∗).

Let us also introduce the distribution function on the logical grid defined byf ∗(x∗, v∗, t) =
f(ϕt(x

∗, v∗), t). Then, the property thatf is conserved along the characteristics translates into
the following new conservation property forf ∗ that shall be used in the algorithm:

f ∗(x∗, v∗, t) = f(ϕt(x
∗, v∗), t),

= f(x, v, t),

= f(X(s; x, v, t), V (s; x, v, t), s),

= f(ϕs(X
∗(s; x, v, t), V ∗(s; x, v, t)), s),

= f ∗(X∗(s; x, v, t), V ∗(s; x, v, t), s),

wheres parameterizes motion along the characteristics. Now,fn being known as well asϕn(=
ϕtn) andϕn+1, the following algorithm can be used to computefn+1.

Algorithm 2:

1. Compute positions in physical phase-space of grid points wherefn+1 is to be computed:
(xn+1

i,j , vn+1
i,j ) = ϕn+1(x

∗
i , v

∗
j ), where(x∗

i , v
∗
j ) are the nodes of the logical grid.

2. Compute origin of grid points(xn+1
i,j , vn+1

i,j ) using algorithm 1 or similar. We denote by
(Xn

i,j, V
n
i,j) these origins.

3. Transform(Xn
i,j, V

n
i,j) back to the logical grid at timetn: (X∗n

i,j , V
∗n
i,j ) = ϕ−1

n (Xn
i,j, V

n
i,j).

4. Interpolatef ∗n at origin of characteristics on logical grid to getfn+1, asf ∗(n+1)(x∗
i , v

∗
j ) =

f ∗n(X∗n
i,j , V

∗n
i,j ).

Steps 2 and 4 exist in any nonsplit semi-Lagrangian code. Hence the extension of such codes
to moving grids can be performed easily by implementing the transform from logical to physical
space (step 1) and the back transform from physical to logical space (step 3).

4.2 Coupling with the Poisson equation

One of the problems that can arise with the moving grid is that the grid points fail to be aligned
along a given positionx in physical space. Hence when velocity moments, in particularρ, need
to be computed we need to interpolatef at some specified points for the numerical integration.



In order to minimize these interpolations the numerical integration is performed using an adaptive
Gauss quadrature. The grid motion could be constrained to avoid this (forcing points to line up
in columns of constantx); but if it is desired that the mesh motion track the phase space flow
as closely as possible (so as to minimize numerical diffusion) such measures are needed. The
trade-off for real applications has yet to be assessed.

In some systems, the requirement that the mapping from logical to physical mesh remain simple
may itself limit the ability of the grid to follow the phase space flow.

5 Application to beam simulation in transverse phase space

In this kind of simulation the beam envelope can evolve greatly, leaving at any given time an large
portion of a fixed grid empty and inducing much unnecessary computation. For this reason, we
use a moving grid, and adapt that grid at each time step to the RMS beam envelope. Hence the
transformϕ is a rotation coupled to a dilation following the envelope motion. In the following, we
consider x to be a dimensionless quantity, scaled to the size of the physical domain and

More precisely, the ellipse defined by its larger dimensiona, its smaller dimensionb and its
angleθ with respect to the(Ox) axis can be defined by the RMS parameters of the beam from the
relations

tan 2θ =
2〈xx′〉

〈x2〉 − 〈x′2〉
,

a =
√

2(cos2 θ〈x2〉 + sin2 θ〈x′2〉 + 2 sin θ cos θ〈xx′〉),

b =
√

2(sin2 θ〈x2〉 + cos2 θ〈x′2〉 − 2 sin θ cos θ〈xx′〉),

where for a functionχ(x, x′) we denote by

〈χ(x, x′)〉 =

∫
χ(x, x′)f(x, x′) dxdx′∫

f(x, x′) dxdx′ .

In this calculation, we considerx to be a dimensionless quantity, scaled to the size of the physical
domain and, as usual in beam physics,x′ = vx

vz
, wherevz is the longitudinal velocity of the beam.

The computing box at timetn+1 is determined usinga, b andθ obtained from RMS values of
the beam computed at timetn.

6 Numerical results

In order to validate our method and pinpoint its advantages, we applied it in cases where the RMS
envelope motion is important, namely first in the case of a mismatched beam in a uniform focusing
channel and then in the case of a matched beam in a periodic focusing channel.

We considered the model problem of the transverse axisymmetric Vlasov-Poisson equation
with vanishing canonical angular momentum. This problem reads

∂f

∂t
+ vr

∂f

∂r
+ (Fapp +

q

m
Er)

∂f

∂vr

= 0,



1

r

d

dr
(rEr) = ρ =

∫
f dvr.

6.1 Mismatched Gaussian beam in a uniform focusing channel

We consider a mismatched Gaussian beam

f0(r, vr) = n0e
−(r2/a2+v2/v2

th)

with a linear applied field of the formαr.
We represent snapshots of the beam and the moving computing box in Figure 1. The results

are very satisfying as the computing box follows very precisely the global motion of the beam.

Figure 1: Snapshots of the motion of a mismatched Gaussian beam in a uniform focusing channel

6.2 Matched Gaussian beam in a periodic focusing channel

We consider here a matched Gaussian beam

f0(r, vr) = n0e
−(r2/a2+v2/v2

th)

with a linear applied field of the formα(z)r, whereα(z) is a piecewise constant function switching
beetween 0 and some fixed value, the pattern repeating periodically (the repetition length is called
a lattice period).



We represent snapshots of the beam and the moving computing box in Figure 2. Here as well,
although some filaments are generated by the nonlinear forces, the computing box obtained from
the RMS envelope of the beam does a good job in helping to determine the region of non vanishing
f .

Figure 2: Snapshots of the motion of a matched Gaussian beam in a periodic focusing channel

7 Conclusion

The transform method appears very promising for beam simulations. Use of a very simple trans-
form given by the RMS motion of the beam allows the grid to follow more closely the global
motion of the beam, and thus reduces considerably the size of the grid necessary for the simula-
tion. This method has been implemented on a 1D model problem. The next step will be to assess
its usefulness in more realistic cases, including 2D transverse simulations and/or 1D longitudi-
nal simulations. Finally, we note that many other applications of such a method outside of beam
physics can be envisioned.
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